Gasotransmitters and Stomatal Closure: Is There Redundancy, Concerted Action, or Both?
نویسندگان
چکیده
The epidermis of the aerial part of land plants is pierced by pores through which plants perform gas exchange with environment. The guard cells (GCs), the specialized cells that surround the pore, have the capacity to sense diverse environmental and endogenous stimuli and integrate them into a single output which is the regulation of the stomatal pore width. The stomatal pore size is modulated by changes of the guard cell volume, driven by variations in the osmotic potential of the GCs. The stress hormone abscisic acid (ABA), the master regulator of stomatal movement, induces stomatal closure by the inhibition of H +-ATPases and activation of rapid and slow anion channels, producing the depolarization of the plasma membrane (PM) in GCs, and by an increase in the cytosolic Ca 2+ concentratrion [Ca 2+ ] cyt. While the rise of the [Ca 2+ ] cyt blocks the influx of K + by the inactivation of the inward rectifying K + channels (K + in), the depolarization of the PM, in turn promotes K + efflux driven by outward rectifying K + channels (K + out ; Blatt, 2000). This process is closely regulated by a complex signaling network that involves the participation of numerous ubiquitous signaling components like ROS, protein kinases, phospholipases, and protein phosphatases (Kim et al., 2010; Song et al., 2014); and by other signaling components that are emerging as active players in this signaling network, such is the case of gasotransmitters (García-Mata and Lamattina, 2013). A gasotransmitter is a small gas molecule that: (i) can freely permeates biological membranes; (ii) it is endogenously generated by specific enzymes; (iii) it has specific functions at physiologically relevant concentrations; (iv) it functions can be mimicked by exogenous application of a donor; and (v) it has specific cellular and molecular targets (Wang, 2002). The group of gasotransmitters is, so far, composed by Nitric Oxide (NO), Carbon Monoxide (CO), and Hydrogen Sulfide (H 2 S) and the three of them have been reported to participate in the promotion of stomatal closure (García-Mata and Lamattina, 2013), however, the biology of CO in this physiological process is less known than that of NO and H 2 S. Therefore, this opinion will be focused mainly on the action and interaction of NO and H 2 S. The two of them are accepted as active players in the regulation of stomatal movement, however there are still obscure points …
منابع مشابه
Nitric Oxide as a Mediator of Aba Signalling in Stomatal Guard Cells
Water shortage is likely to be one of the major global environmental stresses of the 21st century. A key plant response to declining soil water potential is increased biosynthesis and subsequent action of abscisic acid (ABA). ABA is an endogenous anti-transpirant that induces stomatal closure, thereby leading to water conservation. The signal transduction processes commencing with guard cell AB...
متن کاملOpposing Effects on Two Phases of Defense Responses from Concerted Actions of HEAT SHOCK COGNATE70 and BONZAI1 in Arabidopsis.
The plant immune system consists of multiple layers of responses targeting various phases of pathogen infection. Here, we provide evidence showing that two responses, one controlling stomatal closure and the other mediated by intracellular receptor proteins, can be regulated by the same proteins but in an antagonistic manner. The HEAT SHOCK COGNATE70 (HSC70), while previously known as a negativ...
متن کاملRelations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees
This study examined the linkage between xylem vulnerability, stomatal response to leaf water potential ( Y L ), and loss of leaf turgor in eight species of seasonally dry tropical forest trees. In order to maximize the potential variation in these traits species that exhibit a range of leaf habits and phenologies were selected. It was found that in all species stomatal conductance was responsiv...
متن کاملConvergence and Divergence of Signaling Events in Guard Cells during Stomatal Closure by Plant Hormones or Microbial Elicitors
Dynamic regulation of stomatal aperture is essential for plants to optimize water use and CO2 uptake. Stomatal opening or closure is accompanied by the modulation of guard cell turgor. Among the events leading to stomatal closure by plant hormones or microbial elicitors, three signaling components stand out as the major converging points. These are reactive oxygen species (ROS), cytosolic free ...
متن کاملABA induces H2O2 production in guard cells, but does not close the stomata on Vicia faba leaves developed at high air humidity
Plants developed under constant high (> 85%) relative air humidity (RH) have larger stomata that are unable to close completely. One of the hypotheses for the less responsive stomata is that the plants have reduced sensitivity to abscisic acid (ABA). Both ABA and darkness are signals for stomatal closure and induce the production of the secondary messenger hydrogen peroxide (H2O2). In this stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Frontiers in plant science
دوره 7 شماره
صفحات -
تاریخ انتشار 2016